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Let [a, b] c ~ and let {L/Le N be a sequence of positive linear operators from
C+1([a,b]) to C([a,b]), n~O. The convergence of L

J
to the unit operator lis

closely related to the weak convergence of a sequence of positive finite measures J1.j
to the unit measure Dp tE [a, b]. Very general estimates with rates are given for the
error IS [a.b] f dJ1./- f(t)l, where f E C+ '([a, b ]), in the presence of an extended
complete Tchebycheff system. These lead to sharp or nearly sharp inequalities of
Shisha-Mond type and are connected to the theory of best L, approximations by
generalized polynomials. © 1989 Academic Press, Inc.

1. INTRODUCTION

The following introductory notions come from [8], which will be of
constant aid throughout this article.

Let the functions f, Uo, UI' ... , Un E en + I ( [a, bJ), n ~ 0, consider the
Wronskians

Uo(x)

u~(x)
W;(x) = W[uo(x), uI(x), ..., u;(x)] =

i = 0, 1, ..., n

and assume that all W;(x) are positive throughout [a, b].
We form the functions

A..(x) = W;(x) W;_2(X)
'1'1 (W;_1(X))2'

positive on [a, b].
125

i= 2,3, ..., n,
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Consider the linear differential operator of order i ~ 1,

i = 1, 2, ..., n + 1; (1)

also set Lof(x) = f(x). Here W[uo(x), u1(x), ..., Ui_1(X),f(x)] denotes the
Wronskian of uo, U 1, ... , U i _ l' f Note that for i = 1, ..., n + 1 we have

d 1 did
LJ(x) = rPo(x) rPl(X)'" rPi-l(X) dx rPi-l(X) dx rPi-2(X) dx

did f(x)
... dx rPl(X) dx rPo(x)'

Consider also the functions

1
gi(X, t) = Wi(x) .

U~-l)(t)

uo(x)

udt)

u~ (t)

uii-1)(t)

u1(x)

U~i-l)(t)

ui(x)

(2)

i = 1, 2, ..., n; all x, tE [a, b].

Note that gi(X, t), as a function of x, IS a linear combination of
uo(x), u1(x), ..., ui(x) and furthermore

all i= 1, 2, ..., n.

Our work is mainly motivated by the following result (see [4, p. 376])

THEOREM. Let Uo, U1, ..., UnECn([a, b]), n~O. Then {u i }7=o is an
extended complete Tchebysheff (E.CT.) system on [a, b] iff Wi(x) are
positive everywhere on [a, b], i = 0, 1, ..., n.

Let



and
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n

En(x, t)=f(x)- L L;/(t)·gi(X, t)-Ln+d(t)·Nn(x, t) (3)
;~O

for all x, t E [a, b], n ~ O.
Let L be a positive linear operator from en + I ([a, b]) into C( [a, b]),

n ~ O. It follows from the Riesz representation theorem that for every
t E [a, b] there is a finite measure f.1, such that

L(f, t) =f f(x) f.1,(dx),
[a,b]

The convergence of positive linear operators to the unit operator was
first studied by P. P. Korovkin in 1953 (see [5]). O. Shisha and
B. Mond [7] were the first to present Korovkin's main result through an
inequality giving this convergence with rates. Many others later engaged in
that study (see especially [3, 6]) which also motivated our work.

Sharp general inequalities of this kind appeared for the first time in 1985
(see [1]), and the method of proof is probabilistic; there among others we
find the special case of u;(x)=xi, i=O, 1, ..., n. Therefore, it is still of
interest to find strong upper bounds to

IL(f, t) - f(t)1 = If f(x) f.1,(dx) - f(t) I
[a,b]

in various important cases.
In this paper we find upper bounds to

f IEn(x, t)1 f.1(dx);
[a,b]

Ifca'b] f(x) f.1(dx) - f(t) I,
where f.1 is a positive finite measure on [a, b] and t is a fixed point in
[a, b]. These bounds lead to sharp or nearly sharp inequalities, in the
natural, very general "environment" of an extended complete TchebychefT
system, for various standard cases (see Theorems 1, 2, 3), Here the
convergence rates are given by the first modulus of continuity
wl(L n + If, h), 0 < h~ b - a. Thus inequalities (6), (7) of Theorem 1 can be
attained, i.e., they are sharp. This is seen in Theorem 1'. Furthermore,
Corollaries 1 and 2 connect our results to the theory ofbesi L I approximation
by generalized polynomials with rates, given by strong inequalities.
Equivalently, our results estimate in the very general E.C.T. setting the rate
of weak convergence of a sequence of positive finite measures to the unit
measure at a fixed point. At the end we give concrete examples of systems
offunctions {u;}7~o satisfying the assumptions of the theorems. To the best
of our knowledge this type of general theorem appears for the first time in
the literature.
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2. MAIN RESULTS

In the following theorem we will get sharp inequalities for a particular
choice of the functions Uo and u,.

THEOREM 1. Let 11 be a positive finite measure of mass m on [a, b] c IR
and t a fixed point in (a, b), such that

I Ix - tlll(dx) = d> O.
[a,b]

(4)

Let thefunctionsf(x), uo(x), u1(x), .."un(x) belong to cn+I([a,b]), n~O,
and let the Wronskians Wo(x), Wj(x), ..., Wn(x) be positive throughout
[a, b].

Assume that uo(x)=c>O and uj(x) is a concave function for x~t and a
convex function for x ~ t. Define

- II x f1s-t'l IGn(x, t) = t gn(x, s) -h- ds, x, tE [a, b], (5)

where 0 < h ~ b - a is given and j,l is the ceiling of the number; n ~ O.
Assume that the first modulus of continuity W j (Ln+ If, h) ~ w, where w > 0
is given.

Consider the error function

n

En(x, t) = f(x) - f(t) - L LJ(t)· gi(X, t) - L n+J!(t)· Nn(x, t).
i~ J

Then we have the upper bounds

I {Gn(b, t) Gn(a, t)}
IEn(x,t)lll(dx)~w·max b' ·d

[a,b] - t t - a

and

It,b] f dll- f(t) I

~ 1m -11If(t)1 + it, ILJ(t)I·1 t,b] gi(X, t) Il(dx) I

+ILn+J!(t)I·lf N n(X,t)ll(dX)!
[a,b]

{
GAb, t) Gn(a, t)} d' 0+ w . max b' " n ~ .

- t t-a

(6)

(7)
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Sharpness of inequalities (6) and (7) is proved in
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THEOREM 1'. Let c( t) = max( t - a, b - t), where t E (a, b) is fixed and let
O<h~b-a. For

k = 0, 1, ..., rc~)1- 1

and N ~ 1 define the continuous function f N as follows:

Nwy ( ~ if kh ~ y ~ ( k +~) h;--+kw 1--
2h 2 '

fN(y)= (k+ l)w, if (k+~) h < y~ (k+ 1)h; (8)

rC(t)l if (fC(t)l 2)h w, h -1+"N h<y~c(t).

Observe that

Define

lim fN(Y) = r:1::
h
1w,

N--...,. + 00

O~y~c(t).

GnN(X,t)=lr gn(X,S)fN(ls-tl)d+ all x,tE[a,b], n~O, N~1.

(9)

Then (as N --+ +00) inequalities (6) and (7) of Theorem 1 are attained, i.e.,
they are sharp.

Namely:

(i) Assume that

and d~m(b-t).

The optimal elements are the function

f(x) = {GnN(X, t),
0,

t~x~b,

a~x~t,

with WI (Ln+ If, h) ~ w, and J1. which is the positive measure of mass m with
masses [m - (dlb - t)] and (dlb - t) at t and b, respectively.
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(ii) Assume that
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and d~m(t- a).

The optimal elements are the function

{
a,

f(x) = -
GnN(x, t),

t~x~b,

a~x~ t,

with OJ1(Ln+d, h) ~ w, and J1 which is the positive measure of mass m with
masses [m - (d/t - a)] and (d/t - a) at t and a, respectively.

The next result relates to best L1-approximation by generalized polyno
mials.

COROLLARY 1. Inequality (6) of Theorem 1 implies

(10)

Remark 1. Given that d =J[a.b] Ix - tl J1(dx) < 00, where J1 is a positive
nonfinite measure on [a, b], inequality (6) of Theorem 1 and inequality
(10) are still valid.

In general we get

THEOREM 2. Let J1 be a positive finite measure of mass m on [a, b] c IR
and t a fixed point in [a, b], such that

( )

l/(n + 2)

J Ix - W+ 2 J1(dx) = h,
[a,b]

(11 )

where °< h ~ b - a is given, n ~ 0.
Let thefunctionsf(x), uo(x), u1(x), ...., un(x) belong to cn+1([a,b]) and

let the Wronskians Wo(x), W1(x), ..., Wn(x) be positive throughout [a, b].
Assume that the first modulus of continuity OJ 1(L n+ 1f, h) ~ w, where w >°
is given.

Consider the error function

n

En(x,t)=f(x)- L LJ(t).g;(x,t)-Ln+1f(t)·Nn(x,t).
;=0
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Then we have the upper bounds

f IEn(x, t)1 ~(dx)
[a,b]
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( )

(n+l/n+2)
~w·(ml/(n+2)+I)· f INn(x,t)l(n+2/n+I)~(dx) (12)

[a,b]

and

It'b] f d~ - f(t)1

~ If(t)1 ·If go(x, t) ~(dx) -11
[a,b]

+itl ILJ(t)1 ·1 t,b] gi(X, t) ~(dx) I

+ILn+J!(t)I·lf Nn(X,t)~(dx)1
[a,b]

+ w. (m l/(n+2) + 1)

( )

(n+ l/n+2)

. fINn(X, t)1 (n+ 2/n+ I). ~(dx) ,
[a,b]

n~O. (13 )

(15)

A more general connection to best L 1 approximation by generalized
polynomials is as follows:

COROLLARY 2. Inequality (12) of Theorem 2 implies

c;~'Ii,'l~~t,.C.7;i~ 1 t'b] k(X) - ita Cigi(X, t) - Cn+ 1 Nn(x, t) I· ~(dx)

( )

(n+l/n+2)
~w·(ml/(n+2)+I)· f INn(x,t)l(n+2/n+I).~(dx) ,n~O.

[a,b]

(14)

The next theorem improves Theorem 2 under a Lipschitz condition.

THEOREM 3. Let ~ be a positive finite measure of mass m on [a, b] c IR
and t a fixed point in [a, b], such that

( )

1/(n+2)

f Ix-tln+2.~(dx) =h,
[a,b]

where 0 < h ~ b - a is given, n ~ O.
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Let the functions f(x), uo(x), u 1(x), ..., un(x) belong to cn+ 1([a, b]) and
let the Wronskians Wo(x), W 1(x), ... , Wn(x) be positive throughout [a, b].
Assume that the first modulus of continuity w 1(Ln+l f, 8)::::;A8\ all°< 8 ::::; b - a, A > 0, °< C( ::::; 1.

Consider the error function

n

En(x, t) = f(x) - I LJ(t)· g ..(x, t) - L n+d(t)· Nn(x, t).
i=O

Then we find the upper bounds (n ~ 0)

f IEn(x, t)ll1(dx)
[a.b]

( )

(n+l/n+2l
A-h'· f INn(x,t)l(n+2/n+l l · l1(dx) ,

[a.b]

m::::; 1;

( )

(n+l/n+2)
A·h'·m(]-,/n+2l. f INn(x,t)l(n+2/n+1)'I1(dx) ,

[a.b]

m~1.

(16)

Remark 2. We see that when w](Ln+If, 8)::::; A8', inequality (16)
improves the corresponding results from inequalities (12) and (13) of
Theorem 2.

3. EXAMPLES

(1) The system of functions ui(X)=Xi, i=O, 1, ..., n, defined on
[a, b], satisfies the assumptions of Theorems 1,2.

In particular LJ(t) = f(il(t), gi(X, t) = (x - t)"ji!, t E [a, b] (see [8,
p.133]).

(2) According to [8, p.135] consider r/Jo(x) = 1, r/J .. (x) = cosh ix,
i = 1, ..., n defined on [a, b], t =°E (a, b).

Note that r/Ji(O) = 1, i = 0, 1, ..., n, go(x, s) = 1 and

i= 1, ..., n.

In particular g](x, 0) = sinh x. Thus the system of functions u.. (x) = gi(X,O),
i = 0, 1, ... , n satisfies the assumptions of Theorems 1,2.
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Indeed, uo(x) = 1, u1(x) = sinh x, and clearly Ul(X) is a concave function
for x ~ 0, and a convex function for x ~ 0.

(3) The system of functions

{Ui(X)} 7~ 0 = {1, ( _1)i - 1 sin ix, ( - 1r cos ix} ~~~)

defined on [a, b], t =°E (a, b), n even, satisfies the assumptions of
Theorem 2.

In particular (see [8, p. 151(11)])

2i
.

g2i(X, 0) = (2i)! [1 - cos x]',

2
i

[1 ]i .g 2i + I (x, 0) = - cos x sm x
(2i+ 1)!

and

L 2i + 1 = D(D2+ 12)(D2+ 22
) •.. (D2+ i 2

),

L 2i + 21(0) = D2(D 2+ 12)(D2+ 22
) .•• (D 2+ i 2

) f(O),

where D indicates the operation of differentiation.

(4) Let ~o(x) = 1, ~i(X) = e'P(i) x, i = 1, ..., n be defined on [a, b], with
cp(i):;i:O, e.g., cp(i)=i, cp(i)= _i-I.

Then (see [8, p. 135]) we have

1 IX
g;(x,t)= ~O(t)"'~i(t) t ~O(S)"'~i(s)gi_l(x,s)ds,

go(x, t) = 1, tE [a, b].

i= 1, ..., n,

From the same reference we get that the system of functions
ui(x) = gi(X, t), i = 0, 1, ..., n satisfies the assumption of Theorem 2.

4. AUXILIARY RESULTS

The next results are of independent interest.

LEMMA 1. Let g be a differentiable real-valued function on [a, b]2 C 1R 2

with g(x, x) = °for all x E [a, b], and let cp be a bounded measurable real
valued function on [a, b].

Define

G(x, t) =rg(x, s) cp(s) ds, all x, tE [a, b].
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Then

GEORGE A. ANASTASSIOU

aG(x, t) _ fX ag(X, S) ( d
a -a qJ s) s.

X I X

Proof Easy. I
As a consequence we get

LEMMA 2. Let

fx f,s-tllGn(x, t) = I gn(X, s) -h- ds, all x, tE [a, b],

where 0 < h ::::; b - a and i·l is the ceiling of the number.
Then

n~ 1, (17)

and

n~2. (18)

Proof See [8, p. 132(6)] and apply Lemma 1 once/twice. I
The last result is used in

LEMMA 3. Assume that uo(x) = c > 0 and u 1(x) is a convex function for
x~t. Let

fx f,s-t'lGn(x,t)= I gn(x,s) -h- ds,allx,tE[a,b],whereO<h::::;b-a,n~O.

Then Gn(x, t»Ofor x>t" Gn(t, t)=O, and, as a function of x, Gn(x, t) is
strictly increasing in x ~ t and continuous in [a, b].

Moreover, Gn(x, t) is a strictly convex function in x ~ t, n ~ 1, and Go(x, t)
is a convex function in x ~ t.

Proof From Wo(x)=¢Jo(x)=uo(x)=c>O and W,(x)= W[uo(x), u,(x)]
=cu',(x»O, u,(x) is a strictly increasing function everywhere on [a,b].
Hence ¢J,(x) = W,(x)/(Wo(x)f = u',(x)/c >0.

By assumption u,(x) is a convex function in x ~ t implying that u;(x) is
an increasing function there; that is, (,61 (x) is increasing in x ~ t.
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Recall that

xrn

-

1

¢In(Xn) dXn dXn_ 1 ••• dX 1
t

and gn(x, t) > 0, (x> t), gAt, t) = 0; n ~ 1, with go(x, t) = 1.
Consequently

135

From ¢J;(x) > 0, i = 1, ..., n, n ~ 2, and ¢J 1(x) being an increasing function we
have that ogn(x, t)lox is a strictly increasing function in x ~ t; note that

ogn(x, t) °( )
ox > x> t ,

Thus gn(x, t) is a strictly convex function in x ~ t, n ~ 2 and clearly g 1(x, t)
is convex in x~t. One can easily prove that Gn(x, t) is a continuous
function in XE [a, b], n~O.

From Lemma 2

(x~t,n~2), i=1,2.

It is clear that Gn(x, t) is a strictly increasing function in x ~ t, n ~ 2.
By strict convexity of gn(x,s) in x~s we get 02gn(X,S)/ox2 >0 (x>s),

which leads to

Hence Gn(x, t) is a strictly convex function in x ~ f, n ~ 2.
Since go(x, f) = 1, all x, t E [a, b], one has

Ix rs- f1Go(x, f) = t -h- ds (x ~ f).

Since Go(x, f) is the integral of an increasing function, it is a convex
function in x ~ f; it is also strictly increasing in x ~ t. Note that
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From og](x, t)/ox = <P](X)/¢JI(t) and since <PI is an increasing function, we
have that og](x, t)/ox is increasing in x~ t. Obviously, ogl(x, t)/ox>O for
all XE [a, b].

Let s be such that t~s~XI<x2 • Then

Adding

and

one has

The last inequality and Lemma 2(17) imply that oGI(x,t)/ox is strictly
increasing in x ~ t, which in turn implies that G] (x, t) is a strictly convex
function in x ~ t.

Since

oG](x, t) 0 ( )
ax > x> t ,

we conclude that G](x, t) is a strictly increasing function in x ~ t. I
The counterpart of Lemma 3 is as follows:

LEMMA 4. Assume that uo(x)=c>O and u](x) is a concave function for
x ~ t. When x ~ t, x, t E [a, b], and we have

J
x ft- slGn(x, t)= t gn(x,s) -h- ds, where 0 < h ~ b - a, n ~ O.

If n is odd, then, as a function of x, Gn(x, t) is a strictly decreasing and
a strictly convex function in x ~ t; moreover, Gn(x, t) > 0 for x < t. If n is
even, then G,,(x, t) is a strictly increasing and a strictly concave function in
x ~ t. Furthermore, Go(x, t) is a strictly increasing and a concave function in
x ~ t. Also Gn(x, t) < 0 (x < t) for n zero or even, and Gn(t, t) = 0 for all
n~O.



RATE OF CONVERGENCE 137

Proof By assumption u,(x) is a concave function in x ~ t implying that
u~(x) is a decreasing function there; iP,(x) is decreasing in x~ t, We see
that for n ~ 1

where

(x < t),

B(t, t) = 0.

Since B(x, t) is a strictly decreasing function in x ~ t, we get that also
iP,(x)· B(x, t) is strictly decreasing in x ~ t.

When n > 1 is odd

og,,(x, t) °( )
O

> x<t,
x

and it is a strictly decreasing function in x ~ t. When n is even

ogAx, t) °( )
ox < x< t,

(x~t,n~2), i=I,2.

and it is a strictly increasing function in x ~ t.
We have proved that for n odd, g,,(x, t) < ° (x < t), g,,(t, t) = 0, and

g,,(x, t) is strictly concave in x ~ t for n> 1; clearly g,(x, t) is concave in
x ~ t. Also for n even g,,(x, t) >°(x < t), g,,(t, t) = 0, and g,,(x, t) is strictly
convex in x ~ t.

From Lemma 2,

oiG,,(X,t) fxOig,,(X,S)rt-sldS
ox' ,ox' h

It is clear that if n > 2 is odd, then G,,(x, t) is strictly decreasing and
strictly convex in x~t, and if n is even, then G,,(x, t) is strictly increasing
and strictly concave in x ~ t. Note that for n ~ 1 odd, G,,(x, t) > °and for
n zero or even, G,,(x, t) < 0, where x < t; moreover, G,,(t, t) = °all n ~ 0.

One can easily see that, as a function of x,

fx rt -SlGo(x, t) =, -h- ds

is a concave and a strictly increasing function in x ~ t.
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From og,(x, t)/ox=¢J,(x)/¢J,(t) and ¢J, a decreasing function, we have
that og,(x, t)/ox is decreasing in x~t. Obviously og,(x, t)/ox>O for all
x E [a, b].

Let s be such that x, < Xl ~ S ~ t. Then

Adding

and

one has

or

The last inequality and Lemma 2(17) imply that oG,(x, t)/ox is strictly
increasing in x ~ t, which means that G, (x, t) is a strictly convex function
in x ~ t. Since

oG,(x, t) 0 ( )
ax < x< t ,

we conclude that G,(x, t) is a strictly decreasing function in x ~ t. I
From Lemmas 3 and 4 we obtain

LEMMA 5. Assume that uo(x) = c > 0 and u,(x) is a concave function for
x ~ t and a convex function for x ~ t.

Let Gn(x, t)= IGn(x, t)l, where

Ix fls-tllGn(x,t)= t gn(X,S) -h- ds, allx,tE[a,b],O<h~b-a,n~O.
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Then for n ~ 1, and as a function of x, Gn(x, t) is strictly decreasing in x ~ t
and strictly increasing in x ~ t; moreover, it is continuous and strictly convex
function in x E [a, b].

Go(x, t) possesses all the above properties, with the exception that it is
merely a convex function in x E [a, b]. In particular, Gn(x, t) >°for x # t,
with Gn(t, t)=O, all n~O.

Lemma 5 implies the next lemma, which is used III the proof of
Theorem 1.

LEMMA 6. Under the assumptions of Lemma 5, for fixed t E (a, b), we
have that

(19 )

all XE [a, b], for all n ~ 1.
Equality can be true only at x = t and at x = a or b.
The above inequality is also true for n = 0, but equality can hold elsewhere,

not only at the points t, a, or b.

Proof When t < x < b by strict convexity of Gn(x, t), n ~ 1, we get

Thus

G- ( ) (Gn(b, t)) ( ) {Gn(b' t) Gn(a, t)} ( )n x, t < b . x - t ~ max , . x - t .
-t b-t t-a

An when a < x < t, again by strict convexity of Gn(x, t) we get

Thus

The next result is used in the proof of Theorem 3.

640/59/2-2
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LEMMA 7. Let It be a positive finite measure of mass m ~ 1 on [a, b] c IR
and t a fixed point in [a, b]. Then

( )

I/rf Ix-tI' It(dx)
[a.b]

is an increasing function in r > 0.

Proof Similar to the proof of the related result in [2, p. 155(c)] I

5. PROOFS OF MAIN RESULTS

Proof of Theorem 1. From [8, p. 138, Theorem II] we have

f(x) = f(t) +it LJ(t)· gj(x, t) +rgn(x, s)· L n+d(s) ds,

all x E [a, b], fixed t E (a, b), n? 0. And from (3) we see that

n

f(x)=f(t)+ L LJ(t)·gi(X, t)+Ln+d(t)·Nn(x, t)
i~ 1

Thus

Since w,(Ln+,f,h)~w (from [1, p.251]), Corollary 2.2 we have

In the proofs of Lemmas 3, 4 we find

gn(x, t) > 0, x> t; n? 1,

gn(x, t) < 0, x< t; nodd,

gn(x, t»O, x< t; n even,

gn(t, t)=O, n?1 and go(x, t) = 1.
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Let X:::;; t and n even. Then

IEn(x, t)1 = It gn(x, s)· (Ln+ d(s) - L n+ d(t))· dsl

:::;; rgn(x, s) ·ILn+ d(s) - Ln+ d(t)1 . ds
x

It fls-tll:::;;w· xgAx,s). -h- ·ds

II
x f,s-tll I=w· t gn(X,S)· -h- ·ds.

That is,

for x :::;; t and n even.
Let x:::;; t and n odd. Then

IEn(x, t)1 = If (- gn(x, s))· (L n+ d(s) - L n+ d(t))· dsl

:::;; r(-gn(x, s)) ·ILn+ d(s) - L n+ d(t)1 . ds
x

II frs-til:::;;w· x (-gn(X,S))· -h- ·ds

/I
x f,s-t'l I=w· I gn(X,S)· -h- ·ds

That is,
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for x :::;; t and n odd.
The last inequality is also true for x ~ t, all n ~ 1, and for n = o. Thus we

have established that

IEAx, t)1 :::;; w· GAx, t),

all x E [a, b], n ~ O.
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Using inequality (19) from Lemma 6 we obtain

(20)

all x E [a, b], fixed t E (a, b), n ~ O.
An integration of inequality (20) with respect to j1 produces inequality

(6).
Inequality (7) is established from

If fdj1-f(t)I~\f (f(X)-f(t)).j1(dx)[+lm-l llf(t)1
[a,b] [a,b]

and

n

(f(x) - f(t)) = I. LJ(t)· gi(X, t) + L n+ J(t). Nn(x, t) + En(x, t). I
i= 1

Proof of Theorem I'. Since

. fls-tllhm (gn(x,s)fN(ls-tl))=gn(x,s) -h- w,
N-++oo

by the bounded convergence theorem we get

f x fX rls - tillim gn(X,S)fN(ls-t\)ds= gn(X'S) -h- wds.
N--+oo ( t

Thus

[f X I IfX rls
- til IN~~OO t gn(X,S)fN(ls-tl)ds =W I gn(X,S) -h- ds,

i.e.,

Setting

we have for n odd that
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and for n zero or even that
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G- ( )={-GnN(X,t»o,nN X, t
GnN(x, t) > 0,

In particular GnN(t, t)=GnN(t, t)=O, all n~O.
Let n~ 1. From [8, p.132(6)] we have

a:O:::;x< t,

t<x:O:::;b.

i =0, 1, ..., n - 1

i=n.

Applying Leibnitz's formula repeatedly, we find that

i= 0,1, ... , n,

and

an+1 jXan+lgn(X,S)
vxn+1 GnN(X, t) = t aXn+1 fN(ls- tl) ds + fN(lx- tl),

all x E [a, b].

Hence

Vi
-;-: GnN(t, t) = 0,
ux'

And one can easily see that

i = 0, 1, ..., n + 1.

i = 0, 1, ..., n + 1.

Since L i is a linear differential operator of order i, i = 1, ..., n + 1,
Lof(t)=f(t) (see (1)), we get L;GnN(t, t)=O, i=O, 1, ...,n+ 1, n~O.

From [8, p. 132] we have

all xE[a,b], n~O.

Hence for n odd we find that

all x E [a, b].

And for n zero or even we find that

a:O:::;x:o:::; t;

t:O:::;x:o:::;b.
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Now consider case (i) of our theorem with f and tt as described in the
statements theoreof. Note that

L f( )={fN(X-t),
n+ 1 X 0,

Hence one can easily see that

t~x~b;

a~x~ t.

wJ(Ln + d, h) ~ w

and LJ(t) = 0, i = 0, 1, ..., n + 1.
Consequently the left-hand sides of inequalities (6) and (7) equal

(GnN(b, t)/b - t)d which, as N --+ +00, converges to w(Gn(b, t)/b - t)d, i.e.,
to the right-hand side of these inequalities.

Finally consider case (ii) of our theorem with f and tt as described in the
statement thereof. Note that

t~x~b;

a~x~ t.

Again one can easily see that

wJ(L n + d, h) ~ w

and

LJ(t) =0, i = 0, 1, ..., n + 1.

Consequently the left-hand sides of inequalities (6) and (7) equal
(GnN(a, t)lt - a)d which, as N --+ +00, converges to w(Gn(a, t)/t- a)d, i.e.,
to the right-hand side of these inequalities. I

Proof of Theorem 2. From [8, p. 138, Theorem II] we have

f(x) = ±LJ(t)gi(X, t)+r gn(x,s)·Ln+d(s)·ds,
i=O '

all x, tE [a, b], n~O.
And from (3) we see that

n

f(x) = I LJ(t)· gi(X, t) + L n+d(t)· Nn(x, t)
i~O

+r gn(x, s)· (L n+d(s) - L n+d(t))· ds.
I

Thus
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Since wl(Ln+lJ,h)~w (from [1, p.251, Corollary 2.2]) we have

where i·l is the ceiling of the number.
Let x ~ t and n even. Then

IEn(x, t)1 = I( gn(x, s) . (Ln+ d(s) - Ln+ d(t)) . ds I

~r(-gn(x, s)) ·ILn+ d(s) - Ln+ d(t)1 . ds
x

~ w . ( gn(X' s) . rIs ~ til· ds

~w·rlx~tllir gn(X,S)dsl·

That is,

for x ~ t and n even.
Let x ~ t and n odd. Then

IEn(x, t)1 = I( (-gn(x, s))· (Ln+ d(s) - Ln+ d(t))· ds I

~r(-gn(x, s)) ·ILn+ d(s) - Ln+ d(t)1 . ds
x

~w.( (-gn(X,s))·rls~tlldS

~w·rlx~tllir gn(X,S)dsl·

That is,

for x ~ t and n odd.

145
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The last inequality is also true for x ~ t, all n ~ 1, and for n = O. We have
thus established that

(21 )

all x, t E [a, b], n ~ O.
Integrating inequality (21) with respect to j1 (j1([a, b])=m) we get

f IEn(x, t)! j1(dx)
[a.b]

J f'x- til~w· -h- ·\Nn(x,t)I·j1(dx)
[a.b]

f ( Ix- t l )
~w· 1+-

h
- ·INn(x,t)I·j1(dx)

[a,b]

= w, [5 INn(x, t)1 'j1(dx) +h!' f Ix - tl 'INn(x, t)1 . j1(dX)]
[a,b] [a,b]

[
1 ( )1/(n+2)J

~w· ml/(n+2)+_. f Ix-tl n+2j1(dx)
h [a,b]

( )

(n+ l/n+2). f INAx, t)!(n+2/n+1)'j1(dx)
[a,b]

( )

(n+ l/n+2)
=w·(m l/(n+2)+ 1)· f /Nn(x, t)/(n+2/n+1)'j1(dx) .

[a,b]

The last inequality and equality are obtained by applying Holder's
inequality twice and by the choice of h (see (11)), respectively. Therefore
we have proved inequality (12).

Inequality (13) is established as follows:

If f(X)j1(dX)-f(t)[~'f(t)I'lf go(X,t)j1(dX)-ll
[a,b] [a.b]

+itt ILJ(I)I "t'b] gj(X, t) j1(dx) I

+ ILn+ d(t)1 ·If Nn(x, t) j1(dX)!
[a,b]

+ f IEn(x, t)1 j1(dx);
[a,b]

Lof(t)=f(t). I
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Proof of Theorem 3. As in the proof of Theorem 2 we have

all x, tE [a, b], n~O.
The Lipschitz condition WI (L n + 1 j, <5) ~ A<5 a implies that
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all s, tE [a, b].

Let x ~ t and n zero or even. Then

IEn(x, t)1 = ILgn(x, s)· (L" + J(s) - L,,+ J(t)). dsl

~rgn(x, s) ·IL,,+ J(s) - L,,+ J(t)1 . ds
x

That is,

for x ~ t and n zero or even.
Let x ~ t and n odd. Then

IE,,(x, t)1 = IL(-g,,(x, s))· (Ln+ J(s) - L n+ J(t))· dsl

~r(-g,,(x, s)) ·ILn + J(s) - L n + J(t)1 .ds
x

That is,

for x ~ t and n odd.
The last inequality is also true for x ~ t, all n ~ O. Thus we have estab

lished that

all x, t E [a, b], n ~ O.

(22)
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Integrating inequality (22) with respect to j1 (Jl( [a, b]) == m) we get

f IEn(x, t)1 j1(dx)
[a,b]

where

( )

1/ln+21

D,(t)=: f !x-tl,(n+2)'j1(dx) .
[a, b]

The last inequality is a consequence of Holder's inequality. That is, we
have obtained that

f IEn(x, t)1 Jl(dx)
[a. b]

( )

(n + l/n + 2)

~A·D,(t). f INn(x,t)!(n+2/n+l l · Jl(dx) .
[a,b]

Case of m ~ 1. By Lemma 7, since a(n + 2) ~ n + 2, we have

(23)

( )

1/,(n+21 ( )1/(n+21J Ix-t!' ln+2 l 'j1(dx) ~ J Ix-W+ 2'Jl(dx) ;
[a,b] [a,b]

that is,

D,(t) ~ h'.

Now the first part of inequality (16) is established by (23) and (24).

Case of m ~ 1. We observe that

( )

1/,(n+2)J !x-t!'(n+2 l · Jl (dx)
[a,b]

( )

1/'ln+2l
==m l/,(n+2l. f Ix_t!'(n+2).!!:(dx)

[a,b] m

(J j1
)

1/(n+21
~ml/a(n+2l. Ix-tln+2.-(dx)

[a.b] m
=: m«(I - al/a(n + 2)) • h.

(24)
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Here we used again Lemma 7. That is, we get
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(25)

Finally, inequalities (23) and (25) imply the second part of inequality
(16). I
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